DPP - 1

Video Solution on Website:-

Video Solution on YouTube:- https://youtu.be/glzkIM90nao

https://physicsaholics.com/home/courseDetails/82

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/20

Q 1. A barometer tube reads 76 cm of mercury. If the tube is gradually inclined at an angle of 60° with vertical, keeping the open end immersed in the mercury reservoir, the length of the mercury column will be:
(a) 152 cm
(b) 76 cm
(c) 38 cm
(d) $38 \sqrt{3}$

Q 2. Equal mass of three liquids are kept in three identical cylindrical vessels A, B and C. The densities are $\rho_{\mathrm{A}}, \rho_{\mathrm{B}}, \rho_{\mathrm{C}}$ with $\rho_{\mathrm{A}}<\rho_{\mathrm{B}}<\rho_{\mathrm{C}}$. The force on the base will be -
(a) maximum in vessel A
(b) maximum in vessel B
(c) maximum in vessel C
(d) equal in all the vessels

Q 3. A satellite revolves round the earth. Air pressure inside the satellite is maintained at 76 cm of mercury. What will be the height of mercury column in a barometer tube 90 cm long placed in the satellite?
(a) 76 cm
(b) 90 cm
(c) zero
(d) None

Q 4. The pressure in a liquid at two points in the same horizontal plane are equal. Consider an elevator accelerating upward and a car accelerating on a horizontal road. The above statement is correct in-
(a) the car only
(b) the elevator only
(c) both of them
(d) neither of them

Q 5. A beaker containing a liquid is kept inside a big closed jar. If the air inside the jar is continuously pumped out, the pressure in the liquid near the bottom of the liquid will -
(a) increase
(b) decrease
(c) remain constant
(d) first decrease and then increase

Q 6. A container having dimensions $5 \mathrm{~m} \times 4 \mathrm{~m} \times 3 \mathrm{~m}$ is accelerated along its breadth in horizontal. Container is filled with water up to the height of 1.5 m . Container is accelerated with $7.5 \mathrm{~m} / \mathrm{s}^{2}$. in accelerated container (Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$, density of water is $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$)

(a) Gauge pressure at point C is $10^{4} \mathrm{Pascal}$
(b) Gauge pressure at point D is 3×10^{4} Pascal
(c) Gauge pressure at the middle of the base is $1.5 \times 10^{4} \mathrm{Pascal}$
(d) Remaining volume of liquid inside the container is $20 \mathrm{~m}^{3}$

Q 7. A liquid of density r filled in the vessel as shown is rotated with constant angular velocity ' w ' about the axis passing through the middle. The radius of cylinder is R. Then -

(a) The minimum yalue of ' w ' for which the liquid comes out is $\sqrt{\frac{g H}{R^{2}}}$
(b) The vatue of ' w ' for which the base of container is just exposed is $\sqrt{\frac{2 g H}{R^{2}}}$
(c) Volume of liquid remaining in the container in option(b) is $\frac{\pi R^{2} H}{2}$
(d) Gauge pressure at point A in the container in option(b) is rgH

Q 8. When at rest, a liquid stands at the same level in the U tubes. But as indicated a height difference h occurs when the system is given an acceleration a towards the right. Here, h is equal to:

(a) $\frac{a L}{2 g}$
(b) $\frac{g L}{2 a}$
(c) $\frac{g L}{a}$
(d) $\frac{a L}{g}$

Q 9. The figure shows a semi-cylindrical massless gate pivoted at the point O holding a stationary liquid of density r . A horizontal force F is applied at its lowest position to keep it stationary. The magnitude of the force is -

$\mathrm{P}_{\text {hysicsaholics }}$

(a) $\frac{9}{2} \rho g R^{2}$
(b) $\frac{3}{2} \rho g R^{2}$
(c) rgR^{2}
(d) Zero

Q 10. Three liquids having densities ρ_{1}, ρ_{2} and ρ_{3} are filled in a U-tube. Length of each liquid column is equal to $1 . \rho_{1}>\rho_{2}>\rho_{3}$ and liquids remain at rest (relative to the tube) in the position shown in figure. It is possible that-

(a) U-tube is accelerating leftwards
(b) U-tube is accelerating upwards with acceleration g
(c) U-tube is moving with a constant velocity
(d) None of these

Q 11. liquids of density ρ_{1} and ρ_{2} stand in the bent tube as shown. Density of lowermost liquid is ρ. Point M and N are at same horizontal leyel and system is in equilibrium. Then

(a) $P_{M}=P_{N}$
(b) $\rho_{2}=2 \sqrt{3} \rho_{1}$
(c) $\rho_{1}=2 \sqrt{3} \rho_{2}$
(d) None of these

Q 12. A cubical open vessel of diameter 5 m is filled with a liquid. The vessel is accelerated horizontally in such a way that the height of the liquid becomes 5 m and the pressure at the mid point of the vessel becomes equal the atmospheric pressure. Then the acceleration of the vessel will be
(a) g
(b) 3 g
(c) 2 g
(d) $3 \mathrm{~g} / 2$

Answer Key

Use code PHYSICSLIVE to get 10\% OFF on Unacademy PLUS and learn from India's Top Faculties

Shubh Karan Choudhary (Skc)
5.9 M mins

Dr Amit Gupta
5.5M mins

5 Ramesh Sharda

4.9 M mins

Sandeep Nodiyal
4.8 M mins

Shailendra Tanwar
3.6 M mins

8

Vishal Vivek
2.7M mins

9

Garima Goel
2.7M mins

Saurabh Sharma
2.6 M mins

Dr S K Singh
2.6M mins

Written Solution Physics DPP

DPP-1 Fluid- Barometer, Manometer, Gauge pressure, Free surface of liquid By Physicsaholics Team

Q1) A barometer tube reads 76 cm of mercury. If the tube is gradually inclined at an angle of 60° with vertical, keeping the open end immersed in the mercury reservoir, the length of the mercury column will be:
(a) 152 cm

$$
\begin{aligned}
& \text { (b) } 76 \mathrm{~cm} \\
& \text { (C) } 38 \mathrm{~cm} \\
& P_{A}=P_{B} \\
& \Rightarrow p_{0}=\operatorname{ligh}^{2} \\
& \ell \operatorname{Cos} 60^{\circ}=76 \mathrm{~cm} \\
& l=15 \mathrm{zcm}
\end{aligned}
$$

(d) $38 \sqrt{3}$

Q2) Equal mass of three liquids are kept in three identical cylindrical vessels A, B and C. The densities are $\rho_{A}, \rho_{B}, \rho_{C}$ with $\rho_{A}<\rho_{B} \leqslant \rho_{C}$. The force on the base will be -
(a) maximum in vesser A
(b) maximum in vessel B
(c) maxinumin yessel C (d)equalin all the vessets

$$
\begin{aligned}
& \begin{aligned}
& m_{g+P_{d A}} \\
& \text { force on base base by liquid. } \\
&=m g+P_{0} A \rightarrow \text { Xame in all lases }
\end{aligned}
\end{aligned}
$$

Q3) A satellite revolves round the earth. Air pressure inside the satellite is maintained at 76 cm of mercury. What will be the height of mercury column in a barometer tube 90 cm long placed in the satellite?
(a) 76 cm

(c) zero
(d) None

$$
\text { Pressearg dur to liquid Column }=\operatorname{Pg}_{1+f} h=0
$$

Q4) The pressure in a liquid at two points in the samehorizontal plane are equal. Consider an elevator accelerating upward and a car accelerating on a horizontal road. The above statement is correct in -

(a) the car only $g_{p+f}=g+a_{0} \quad$ (b) the elevator only
(c) both of them (a) neither of them

$$
P_{A}=P_{B}=P_{C} C
$$

Q5) A beaker containing a liquid is kept inside a big closed jar. If the air inside the jar is continuously pumped out, the pressure in the liquid near the bottom of the liquid will -
(a) increase (b) decrease
(c) remain constant
(d) first decrease and then increase

$$
\begin{aligned}
& \text { air Pumbout } \\
& \text { on prompong out air } \\
& \text { vapour pressure of liquid. } P \text { becomes equal to } \\
& \text { after that liquid Converts } \\
& \text { intovapour } \\
& \Rightarrow h \downarrow \\
& \Rightarrow P \downarrow
\end{aligned}
$$

Q6) A container having dimensions $5 \mathrm{~m} \times 4 \mathrm{~m} \times 3 \mathrm{~m}$ is accelerated along its breadth in horizontal. Container is filled with water up to the height of 1.5 m . Container is accelerated with $7.5 \mathrm{~m} / \mathrm{s}^{2}$. in accelerated container Valume of liquid $\begin{aligned} & =5 \times 4 \times 1.5 \\ & =30 \mathrm{~m}^{3}\end{aligned}$ (Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$, density of water is $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$)

$$
\begin{aligned}
\tan \theta=\frac{2 x}{4} & =\frac{a}{g}=\frac{7.5}{10} \\
\frac{2 x}{4} & =\frac{3}{4} \Rightarrow x=1.5 h
\end{aligned}
$$

(a) Gauge pressure atpoint \varnothing is 10^{4} Pascal (b) Gauge pressure at point D is 3×10^{4} Pascal

(c) Gauge pressure at the middle of the base is $1.5 \times 10^{4} \mathrm{Pascal}$
(d) Remaining volume of liquid inside the container is $20 \mathrm{~m}^{3}$

$$
\begin{aligned}
& \text { Gp, at } C=0 \\
& 1,1,1, \text { mid point of bass }=10^{3} \times 10 \times 1.5=1.5 \times 10^{4}
\end{aligned}
$$

Q7) A liquid of density ρ filled in the vessel as shown is rotated with constant angular velocity ' ω ' about the axis passing through the middle. The radius of cylinder is R. Then $\Rightarrow y=\frac{\omega^{2} x^{2}}{2 g}$

(a) The minimum value of ' ω ' for which the liquid comes out is $\sqrt{\frac{g H}{R^{2}}}$
(b) The falue of ' ω ' for which the base of container is just exposed is $\sqrt{\frac{2 g H}{R^{2}}}$
(c) Velume of liquid remaining in the container in option(b) is $\frac{\pi R^{2} H}{2}$
(d) Gauge pressure at point A in the container in option(b) is $\rho g \mathrm{H}^{2}$

Ans. a,b,c,d

Q8) When at rest, a liquid stands at the same level in the Utubes . But as indicated a height difference h occurs when the system is given an acceleration a towards the right. Here, h is equal to:

$$
\begin{gathered}
\tan \theta=\frac{a}{g}=\frac{h}{L} \\
h=\frac{a l}{g}
\end{gathered}
$$

(a) $\frac{a L}{2 g}$ (b) $\frac{g L}{2 a}$

Q9) The figure shows a semi-cylindrical massless gate pivoted at the point O holding a stationary liquid of density ρ. A horizontal force F is applied at its lowest position to keep it stationary. The magnitude of the force is -

Q10) Three liquids having densities ρ_{1}, ρ_{2} and ρ_{3} are filled in a U-tube. Length of each liquid column is equal to $\mathrm{I} . \rho_{1}>\rho_{2}>\rho_{3}$ and liquids remain at rest (relative to the tube) in the position shown in figure. It is possible that-

$$
P_{A}>P_{B} \text { in givenppictyry. }
$$

(a) U-tube is accelerating leftwards (b) Jotube is accelerating upwards withacceleration g.
(c) U-tureis moving with a constant velocity (d) None of these

Q11) liquids of density ρ_{1} and ρ_{2} stand in the bent tube as shown. Density of lowermost liquid is ρ. Point M and N are at same horizontal level and system is in equilibrium. Then -
(a) $P_{M}=P N$ rams liquid, samplleses
(b) $\rho_{2}=2 \sqrt{3} \rho_{1}$
(c) $\rho_{1}=2 \sqrt{3} \rho_{2}$

$$
\Rightarrow \text { sann(ruessande) }
$$

(d) None of these

$$
\begin{gathered}
\Rightarrow\left(\overrightarrow{)} P_{g}+P_{1} \times g \times 2 \times \sin 60=P_{0}+P_{2} \times g \times x \sin 30^{\circ}\right. \\
P_{1} \phi \times \frac{2 \times \sqrt{3}}{2}=P_{2} g \times 2 \times 2
\end{gathered}
$$

Q12) A cubical open vessel of diameter 5 m is filled with a liquid. The vessel is accelerated horizontally in such a way that the height of the liquid becomes 5 m and the pressure at the mid point of the vessel becomes equal the atmospheric pressure. Then the acceleration of the vessel will be
(a) g
(b) $3 g 2$
$\tan \theta \geq \frac{5}{2.5}=\frac{a}{g}$

$$
a=2 g
$$

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/82

Video Solution on YouTube:-
https://youtu.be/glzkIM90nao

Written Solution on Website:-

Chalo Nikis

